
Modeling and Computation of Security-constrained
Economic Dispatch with Multi-stage Rescheduling

Michael Ferris

University of Wisconsin, Madison

Joint work with Yanchao Liu, University of Wisconsin-Madison, yliu67@wisc.edu
and Feng Zhao, ISO New England Inc.

June 24, 2014

1 / 31

Power generation, transmission and distribution

Determine generators’ output to reliably meet the load
I

∑
Gen MW =

∑
Load MW, at all times.

I Power flows cannot exceed lines’ transfer capacity.

2 / 31

Economic dispatch (a linear program)

� �

�

�

� ��� ��

�

���� � � 	

���

���

��

���������	
������	�

������	���������

��� 	
�� �� �� �� �

����

Variables: Generators’ output u; Power flows on lines x ; Bus voltage angle δ
Objective: Minimize the total generation cost, cTu
Constraints:

Kirchhoff’s laws: g(x , u) = 0, where g is a linear function, including:
I Nodal balance equations, line flow equations.

Variable bounds: h(x , u) ≤ 0, including:
I Line limit: −x̄ ≤ x ≤ x̄ ; Generator capacity: 0 ≤ u ≤ ū

3 / 31

Contingency: a single line failure

���������

������

������

������

� �

	

� �

	

�
����������

� �

	

�
����������

� �

	

�
���������	

A network with N lines can have up to N contingencies

Each contingency case:
I Corresponds to a different network topology
I Requires a different set of equations g and h
I E.g., equations gk and hk for the k-th contingency.

4 / 31

Control v.s. State variables

Generator output u is a CONTROL variable:

I System operator can directly set/adjust its level
I No abrupt change, i.e., it takes time to ramp up/down a generator

Line flow x is a STATE variable:

I The level depends on u and the network topology
I Automatically jumps to a new level when topology changes, e.g., when

a line suddenly fails

Security requirement: When a line fails, other lines should not
overload.

Change “base” state and control variables to achieve this.

5 / 31

Security-constrained Economic Dispatch

Base-case network topology g0 and line flow x0.

If the k-th line fails, line flow jumps to xk in new topology gk .

Ensure that xk is within limit, for all k .

SCED model:

min
u,x0,...,xk

cTu B Total cost

s.t. 0 ≤ u ≤ ū B GEN capacity const.

g0(x0, u) = 0 BBase-case network eqn.

−x̄ ≤ x0 ≤ x̄ BBase-case flow limit

gk(xk , u) = 0, k = 1, . . . ,K BCtgcy network eqn.

−x̄ ≤ xk ≤ x̄ , k = 1, . . . ,K BCtgcy flow limit

6 / 31

Security-constrained Economic Dispatch (SCED)

G1 G2

$1/MW $2/MW
Line 1: 100MW capacity

Line 2: 120MW capacity

200 MW Load

Bus 1 Bus 2

0

100

100

200

200

Cost = $200

Economic dispatch

100

50

50

200

100

Cost = $300

Security-constrained Economic
Dispatch

7 / 31

Security-constrained Economic Dispatch (SCED)

G1 G2

$1/MW $2/MW
Line 1: 100MW capacity

Line 2: 120MW capacity

200 MW Load

Bus 1 Bus 2

0

100

100

200

200

Cost = $200

Economic dispatch

100

50

50

200

100

Cost = $300

Security-constrained Economic
Dispatch

8 / 31

Reality offers a sweeter deal...

Normal

LTE

STE

DAL

≤ 5 min

≤ 15 min

≤ 30 min

Time

Line flow

Contingency
occurs

Operating procedure of ISO New England requires the post-contingency
line loadings be:

≤ STE (short time emergency) rating in 5 minutes;
≤ LTE (long time emergency) rating in 15 minutes;
≤ Normal rating in 30 minutes.

9 / 31

The cost can be lower...

G1 G2

$1/MW $2/MW
Line 1: 100MW capacity

Line 2: 120MW capacity

200 MW Load

Bus 1 Bus 2

If:

The lines can withstand 40%
overload for 5 minutes.

G1 and G2 have a 5-min ramping
radius of 40 MW and 35 MW,
respectively.

65

76.5

76.5

200

135

Cost = $265

SCED with Corrective rescheduling.
Lower Cost!

10 / 31

What we will contribute

Research issues:

Corrective actions are not modeled in ISO’s dispatch software.

Because it was “insolvable” due to its large size (≥ 10GB LP).
I “We looked into SCED with corrective actions before, and were

hindered by the computational challenge.” – Feng Zhao, senior analyst
at ISO-NE, via private correspondence.

Our contributions:

We model the multi-period corrective rescheduling in SCED.

Enhance the Benders’ algorithm to solve the problem faster.

Achieve about 50× speedup compared to traditional approaches.

11 / 31

Our model (K contingencies, T periods)

min
x0,...,xk ,u0,...,uk

cTu0

s.t. g0(x0, u0) = 0

h0(x0, u0) ≤ 0

gk(x tk , u
t
k) = 0 k = 1, . . . ,K , t = 0, . . . ,T

hk(x tk , u
t
k) ≤ 0 k = 1, . . . ,K , t = 0, . . . ,T

|utk − ut−1
k | ≤ ∆t k = 1, . . . ,K , t = 1, . . . ,T

u0
k − u0 = 0 k = 1, . . . ,K

Subscript 0 indicates a quantity in the base-case network topology.

This is a large-scale linear program.

What special structure does it have?

12 / 31

Model structure

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

200

Columns

R
ow

s

Base Case

Contingency 1, time 0

Contingency 1, time 1

Contingency 1, time 2

Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Base Case

Contingency 1

Contingency 2

SCED Feasible
Region

Cost-
minimizing

direction

SCED optimal point

ED optimal point

Figure : On the u0 plane, the feasible
region of a SCED is the intersection of
K+1 polyhedra.

13 / 31

Basic idea of Benders’ decomposition

Approximate the feasible region using cuts

1 Master problem + N subproblems

Iterate:
1 (If not converged) Solve the Master problem
2 Given Master solution, solve each subproblem and generate cuts
3 Add the cuts to Master problem; goto step 1.

Solution time ≈ (Time to solve each subproblem) × (# of
subproblem per iteration) × (# of iterations needed for convergence).

14 / 31

Benders’ decomposition
The model is equivalent to

min
x0,u0

cTu0

s.t. g0(x0, u0) = 0

h0(x0, u0) ≤ 0

wk(u0) ≤ 0 k = 1, . . . , c (1)

where wk(u0) is given by the subproblem

wk(u0) = min
xk ,uk ,sk

||stk ||

s.t. gk(x tk , u
t
k) = 0 t = 0, . . . ,T

hk(x tk , u
t
k)− stk ≤ 0 t = 0, . . . ,T

|utk − ut−1
k | − stk ≤ ∆t t = 1, . . . ,T

u0
k − u0 = 0 (2)

stk ≥ 0

15 / 31

Benders’ cut for wk(u0) ≤ 0

Any point ū0 would provide a subgradient inequality:

wk(u0) ≥ w̄k + λ̄k(u0 − ū0)

where w̄k = wk(ū0) and λ̄k is the Lagrangian multiplier of the constraint
(2) at the subproblem solution.

w̄k + λ̄k(u0 − ū0) ≤ 0

is a valid inequality for the master problem and will cut off the point ū0 if
w̄k is positive.

Benders’ algorithm

Alternately solving the master problem and the subproblems, approaching
a better and better satisfaction of (1) until maxk ||sk || ≤ ε. We take
ε = 10−6.

16 / 31

Current state of the art (unsatisfactory)

Table : CPLEX v.s. Vanilla Benders Algorithm

Case Ctgcy
Big LP (time) Vanilla Benders

Simplex Barrier1 Iter LPs Time
118-bus 183 207.8 13.8 8 1464 123.5

2383-bus 20 175.0 205.5 52 1040 1281.2
2383-bus 50 1403.2 123.1 49 2450 2799.3
2383-bus 100 3621.8 240.6 32 3200 3688.6
2383-bus 400 - 2354.5 - - -

Three time-periods: 5-min STE, 15-min LTE and 30-min Normal.

Vanilla Benders’ algorithm is inferior to the big LP formulation.

Big LP cannot handle large instances.

1Barrier method without crossover. Crossover may take even more time.
17 / 31

How we enhanced the Benders’ algorithm ...

1 Reduce the number of LPs

2 Solve subproblem LPs faster

3 Parallel computing

4 Add difficult contingencies to master model

Case Ctgcy
Big LP (time) Vanilla Benders Enhanced Benders

Simplex Barrier Iter LPs Time Iter LPs Time
118-bus 183 207.8 13.8 8 1464 123.5 12 755 13.5

2383-bus 20 175.0 205.5 52 1040 1281.2 11 60 41.5
2383-bus 50 1403 123.1 49 2450 2799.3 11 135 46.5
2383-bus 100 3621 240.6 32 3200 3688.6 12 245 79.4
2383-bus 400 - 2354.5 - - - 13 879 197.8
2383 wp 2349 21 9529 515.7
2736 sp 2749 4 5500 220.9

2737 sop 2753 1 2753 100.5
2746 wop 2794 1 2794 118.5
2746 wp 2719 14 5558 333.5

18 / 31

Enhancement #1: Reduce the number of LPs

Most contingencies are actually feasible (i.e., subproblem has obj.
value 0) given the base-case solution.

Once a contingency becomes feasible, it is likely to remain feasible in
subsequent iterations.

Improvements:
I Once a contingency is feasible, remove it from the Active List.
I When the Active List is empty, add back all contingencies and re-scan.
I Done if all are feasible; continue otherwise.

This will reduce the number of subproblem LPs to solve.

19 / 31

Illustration

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
on

tin
ge

nc
y

Iteration

Computed
Captured
Removed

Figure : Benders’ algorithm with reduced number of subproblem LPs, 118-bus
case

20 / 31

Enhancement #2: Solve subproblem LPs faster

Table : Time (seconds) spent in sequentially solving 100 subproblems using
different LP methods

Case
Subproblem Size Default

Barrier
Barrier

Row Col NZ Simplex \Xover
118-bus 1070 2668 8545 14.9 14.4 13.4
2383-bus 16814 37129 115006 453.6 139.0 79.8

Subproblem does not need a basic solution to generate a cut, any
optimal solution (mid-face or vertex) can give a cut.

So we use barrier method and disable the crossover (barcrossalg=-1)
for speedup.

21 / 31

Effect of Enhancement #1 and #2

Case Ctgcy
Big LP Vanilla Benders RedLP+Opt

Splx Bar Iter LPs Time Iter LPs Time
118-bus 183 207.8 13.8 8 1464 123.5 10 764 72.6

2383 wp 20 175.0 205.5 52 1040 1281.2 46 115 99.8
2383 wp 50 1403 123.1 49 2450 2799.3 48 193 160.3
2383 wp 100 3621 240.6 32 3200 3688.6 33 289 226.0
2383 wp 400 - 2354.5 - - - 35 953 913.3

22 / 31

Enhancement #3: Parallel computing

In each iteration, divide the Active List in N batches, process them in
parallel.

For each batch of LPs, use GUSS facility of GAMS (build model once,
update data and solve for different LPs).

Case Ctgcy
Vanilla Benders RedLP+Opt Paraguss (8)

Iter LPs Time Iter LPs Time Iter LPs Time
118-bus 183 8 1464 123.5 10 764 72.6 14 776 15.1
2383 wp 20 52 1040 1281.2 46 115 99.8 48 117 95.4
2383 wp 50 49 2450 2799.3 48 193 160.3 48 193 101.7
2383 wp 100 32 3200 3688.6 33 289 226.0 32 288 96.3
2383 wp 400 - - - 35 953 913.3 38 956 218.0

23 / 31

Enhancement #4: Add difficult contingencies to master
model

Observation: A few contingencies remain in the Active List for many
iterations.

I A small-sized Active List means low efficiency of parallelism (due to
overhead).

I Too many iterations means much time needed for convergence.

Improvement:
I When the size of the Active List drops to a threshold level Lfc, add the

remaining active contingencies to the master problem.
I The added contingencies remain in the master problem in all future

iterations and their subproblems is removed from the List for good.

The level of Lfc reflects tradeoff between “a harder master problem”
and “more iterations”.

Empirically, Lfc = 3 or 5 is good for large instances.

24 / 31

Computational Results

Case Ctgcy
RedLP+Opt Paraguss (8) Fatmaster (5)

Iter LPs Time Iter LPs Time Iter LPs Time
118-bus 183 10 764 72.6 14 776 15.1 12 755 13.5
2383 wp 20 46 115 99.8 48 117 95.4 11 60 41.5
2383 wp 50 48 193 160.3 48 193 101.7 11 135 46.5
2383 wp 100 33 289 226.0 32 288 96.3 12 245 79.4
2383 wp 400 35 953 913.3 38 956 218.0 13 879 197.8

Case Ctgcy
RedLP+Opt Paraguss (40) Fatmaster (5)

Iter LPs Time Iter LPs Time Iter LPs Time
2383wp 2349 106 12123 12165 104 9788 769.5 21 9529 515.7
2736sp 2749 45 5543 5836 44 5542 366.2 4 5500 220.9

2737sop 2753 1 2753 2801 1 2753 100.1 1 2753 100.5
2746wop 2794 1 2794 3046 1 2794 118.3 1 2794 118.5
2746wp 2719 262 8646 9738 278 8622 1427.7 14 5558 333.5

Big LP for 2383-bus 2349-contingency case generates a 18GB LP. CPLEX could
not solve it in 3 hours.

Computer used for the lower table: Dell R710 (opt-a006) 2 3.46G Chips 12 Cores,
288G Memory.

25 / 31

Dealing with Infeasibility

Up to now, we implicitly assumed that the problem is feasible.

What if it is not feasible?
I Big LP formulation will report “infeasible”.
I Traditional Benders’ algorithm will encounter infeasible master or

subproblem and halt.

Need to know the cause and the nearest feasible solution.

Existing method: Pre-screen each contingency beforehand
I Takes too much time to pre-screen
I Can not catch all infeasible cases; not effective.

Our method: Diagnose and remove in the algorithm. Faster and
effective.

26 / 31

Causes of infeasibility

Base Case

Contingency 1

Contingency 2Cut

Cut

(a) Contingency 2 is intrinsically in-
feasible. Either the corresponding
subproblem is infeasible or its Ben-
ders’ cuts will render the master prob-
lem infeasible.

Base Case

Contingency 1

Contingency 2

Cut

Cut

(b) Each individual contingency is
feasible, but they are not simultane-
ously feasible. Their Benders’ cuts
will render the master problem infea-
sible.

Figure : Two cases of infeasibility.

27 / 31

Pre-screening is not a good idea

Pre-screening the contingencies 1 by 1

Solve an LP consisting of the base-case and a single contingency. If the LP
is infeasible, it means the given contingency is intrinsically infeasible.
Remove it from the Contingency List.

Takes much time to pre-screen a large list of contingencies.

Cannot catch individually feasible but simultaneously infeasible
contingencies (pairs or triples, etc.).

Table : Time (in second) spent to pre-screen for different cases. The LPs are
solved sequentially.

Case # Lines # Feasible # Removed Time

2383 wp 2896 2353 543 49670.8
2736 sp 3269 2749 520 76068.8

2737 sop 3269 2753 516 13069.2
2746 wop 3307 2794 513 20160.2
2746 wp 3279 2719 560 43618.7

28 / 31

Identifying infeasible contingencies in Benders’ algorithm

If a subproblem is infeasible (in the first iteration), the corresponding
contingency is intrinsically infeasible. Remove (tabu) it.

I Typically line failure results in an islanded load node or sub-network.

Master problem infeasible: solve a modified master model to find the
“minimal” set of problematic contingencies using sparse optimization.

min
x0,u0

f0(x0, u0) +
∑

(k,i)∈CUT

Mv ik

s.t. g0(x0, u0) = 0, h0(x0, u0) ≤ 0

w̄ i
k + λ̄ik(u0 − ūi0)− v ik ≤ 0, v ik ≥ 0 ∀(k , i) ∈ CUT

I Solution of this model indicates the violated cut.
I Tabu the contingency that has contributed one or more violated cuts.

Start a pre-screening daemon in parallel when the Active List size is
smaller than Lfc.

I Tabu infeasible ones, and add feasible ones to the master problem.

29 / 31

Computational Results

Table : Solution for big cases on opt-a006, 80 threads, Lfc = 5

Case Ctgcy Iter LPs Time Added Tabu
2383 wp 2896 15 7694 522.1 6 547
2736 sp 3269 4 6020 252.9 1 520

2737 sop 3269 4 6023 242.2 0 516
2746 wop 3307 4 6102 280.2 0 513
2746 wp 3279 8 6053 334.3 4 560
2383 wp 2353 16 7156 460.6 6 4
2736 sp 2749 4 5498 245.9 1 0

2737 sop 2753 1 2753 110.8 0 0
2746 wop 2794 1 2794 131.7 0 0
2746 wp 2719 14 5558 354.4 4 0

Upper: all lines are in the Contingency List (N-1 security).

Lower: all pre-screened lines are in the Contingency List.

30 / 31

Summary

1 SCED is a million-dollar problem for system operators.
2 SCED with corrective actions can save money, but is hard to solve.

I Too big for CPLEX
I Original Benders’ decomposition algorithm is slow.

3 Our algorithmic enhancements yield significant speedup.

4 Potential for practical deployment.

Extension

1. Decomposition approach is useful in many applications.
2. Currently in collaboration with ISO-NE to deploy our algorithm.

31 / 31

